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Abstract

The quality of bioanalytical data is highly dependent on using an appropriate regression model for calibration curves. Non-weighted linear
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egression has traditionally been used but is not necessarily the optimal model. Bioanalytical assays generally benefit from using either data
ransformation and/or weighting since variance normally increases with concentration. A data set with calibrators ranging from 9 to 10 000 ng/mL
as used to compare a new approach with the traditional approach for selecting an optimal regression model. The new approach used a combination
f relative residuals at each calibration level together with precision and accuracy of independent quality control samples over 4 days to select and
ustify the best regression model. The results showed that log–log transformation without weighting was the simplest model to fit the calibration
ata and ensure good predictability for this data set.

2005 Elsevier B.V. All rights reserved.
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. Introduction

In recent years great efforts has been made to standardize
nternational validation procedures for bioanalytical assays. Dif-
erent European and American authorities such as the FDA,
CH and ISO continuously develop validation guidelines and
irectives about experimental design and data evaluation in the
eld of bioanalytical method validation [1–4]. A first attempt at
armonization and standardisation was the conference held in
ashington in 1990 to discuss what a validation of bioanalytical
ethods should consist of, i.e. which analytical parameters (bias,

recision, etc.) need to be documented to validate a method.
he resulting Washington Conference Report and publications

elated to the conference are generally viewed as the basis for
ioanalytical method validation [5,6]. However, the usefulness

∗ Corresponding author at: Wellcome Unit, Faculty of Tropical Medicine,
ahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand.

E-mail address: niklas@tropmedres.ac (N. Lindegardh).
1 Authors have contributed equally to this work.

of some of the recommendations is questionable, particularly
given the lack of advice for the practical execution of a valida-
tion study. In the light of this critique, a new SFSTP (Société
Francaise des Sciences et Techniques Pharmaceutiques) com-
mittee was founded in 1995 to develop guidance for validation
of bioanalytical methods. The SFSTP validation guide of chro-
matographic methods for drug bioanalysis was published in
1999 by Hubert et al. and illustrated the same year by Chiap et al.
[7,8]. The guide has recently been updated by the introduction
of the concept of an accuracy profile [9]. The accuracy profile
utilises a “β-expectation tolerance interval” to visually discrim-
inate between acceptable and non-acceptable regression models
during pre-validation. The “β-expectation tolerance interval” is
constructed using estimates of the bias and the standard deviation
of the intermediate precision obtained from validation standards
or back calculated concentrations of calibration standards anal-
ysed in replicate series [10–15]. The concept and content of the
two validation phases (i.e. pre-validation and validation) is sub-
stantially covered in the literature [10–12,15–18]. Boulanger et
al. state that: “During the ‘pre-validation’, the model to be used
731-7085/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2005.11.006
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as calibration curve will be identified and the quality of fit will
be assessed only at this stage. The experiments proposed are
designed to consistently evaluate the adequacy of the model. In
the second phase, called ‘validation’, the objective is to mimic
the routine practice that is envisaged. The model will be used
as is – the parameters will of course be estimated based on the
new data – and no more investigation specific to the quality of
fit will be conducted, the same way it should be carried out dur-
ing routine. In this second step, the experiments are designed to
focus on the estimation of the bias and precision of the method,
not on the calibration curve.” [18]. The present paper suggests
a new approach to choose an optimal regression model. Instead
of fixate the regression model during pre-validation the final
choice should be based on all available data from the validation
phase.

A good regression model is the foundation for accurate
and reproducible quantification over the whole calibration
range. A linear model is commonly preferred since the com-
plexity increases with the use of non-linear regression. FDA
guidelines state that: “Standard curve fitting is determined
by applying the simplest model that adequately describes the
concentration–response relationship using appropriate weight-
ing and statistical tests for goodness of fit” [1]. These require-
ments sound very clear and straightforward. However, comply-
ing with the stipulations might in reality not be so simple. The
simplest and most commonly used parameter to define the degree
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and comparing the total sum of residuals for each tested regres-
sion model [17,24,26,27]. Some reports have also incorpo-
rated predictability by looking at the accuracy of independent
quality control (QC) samples before choosing the final model
[25].

We propose a strategy that will enable the analyst to choose
the regression model that gives the optimal overall performance
over time. This approach is based on parameter ranking of data
generated during several days (4 days in the present paper) to
mimic the actual conditions during routine bioanalysis instead of
only one day of pre-validation data. The curve fit was evaluated
by minimising the residuals at each calibration level rather than
just the total sum of residuals. Accuracy and precision were
also incorporated for three independent QC levels during several
days of analysis before the final regression model was chosen.
Nineteen different regression models were evaluated using data
obtained during the validation of a liquid chromatographic assay
for piperaquine (PQ) quantification in urine using a 1000-fold
concentration range (9–10 000 ng/mL) [28].

2. Experimental

2.1. Background

2.1.1. Homoscedasticity
The first step during an evaluation of regression models
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f association between two variables as a straight line is denoted
y the coefficient of determination (r2). Many analysts depend
ntirely on the value of r2 being greater than 0.99 as an accep-
ance criterion when evaluating regression model and linearity.
owever, r2 alone is not adequate to demonstrate linearity since

2 values above 0.999 can be achieved even when the data show
igns of curvature [19].

The most common approach to fit a calibration curve to
ata points (x, y) is by ordinary linear regression (OLR) using
east squares calculation. This approach presupposes that each
ata point in the range has a constant absolute variance (i.e.
omoscedastic data). Most bioanalytical assays usually have
o cover a broad concentration range and the variance is more
ikely to increase with concentration (i.e. heteroscedastic data)
19–24]. A consequence of using OLR is that deviations at
igh concentrations will influence the regression line more than
eviations at low concentrations. Thus the use of OLR with
eteroscedastic data will lead to impaired accuracy despite an
cceptable r2 value, particularly at the lower end of the concen-
ration range [23].

All bioanalytical assays could benefit from a regression
odel more complex than OLR. Alternative models include
eighted linear regression (WLR) and/or data transformations

20–25]. These models will normally generate a better curve
t (i.e. smaller sum of residuals and random scatter in residual
lots) than OLR. They will also minimise time-dependent vari-
tion (i.e. minimise variation in slope and intercept for standard
urves obtained over several days) and increase accuracy over
he whole concentration range.

Traditionally the regression model is chosen in the pre-
alidation phase by evaluating 3–5 series of calibration curves
hould include a test for homoscedasticity. The two most com-
on ways to evaluate homoscedasticity are to conduct an F-test

i.e. test for significant difference in variance) or to visually
xamine a residual versus concentration plot [24]. If the vari-
nce is constant (i.e. homoscedastic data) over the calibration
ange the residual versus concentration plot should show resid-
als randomly distributed around the x-axis [21]. In the F-test
he experimental F-value (Fexp) is expressed as the ratio between
he variance at the lowest and at the highest concentration in the
alibration range as proposed by the International Organization
or Standardization [29]. If the Fexp value is greater than the
abulated F-value (Ftab) at a chosen confidence level the vari-
nces are significantly different (i.e. the data are heteroscedastic)
24,30–33].

.1.2. Ordinary and weighted linear regression (OLR/WLR)
OLR assumes homoscedasticity and associates the dependent

ariable y with the independent variable x. The regression line is
onstructed so as to minimise the squared sum of the vertical dis-
ance (sum of squared residuals, SSR) between the observations
nd the constructed regression line [24]. One method of deal-
ng with heteroscedastic data is to apply a weighted regression

odel. The principle of weighting is to give more importance
o data points with a low variance and less importance to data
oints with high variance. Weighted models are particularly suit-
ble for assays where the relative standard deviation (R.S.D.)
s constant (i.e. S.D. increases proportional to concentration)
hroughout the concentration range. An optimal weighted model
ill balance the regression line to generate an evenly distributed

rror throughout the calibration range. The most commonly used
eights are the empirical weights 1/x, 1/x2 and 1/x1/2.
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2.1.3. Polynomial regression
Most bioanalytical data sets are heteroscedastic as the S.D.

increases as concentration (x) increases. Applying a weighted
regression line can often circumvent this problem. Thus, if the
weighting is successful the relative residual versus concentra-
tion plot should generate a scatter of points randomly distributed
around the x-axis (i.e. around zero). If the average relative resid-
ual (�RR) tends to increase or decrease with increasing x the
data set is non-linear or curved. The simplest method applicable
to non-linear data is the quadratic form of polynomial regres-
sion. The equation for quadratic regression is y = a + bx + cx2,
where y is dependent both on the x variable and its square (x2).
Polynomial regression, in particular with a higher order than
quadratic, should be used with caution as most bioanalytical
techniques should produce linear data. A curved data set can
be detector-related (e.g. GC-ECD or LC-ESD), but can also be
an indication of problems with the bioanalytical assay such as
adsorption, solubility or ion suppression.

2.1.4. Transformation methods
An alternative approach to overcome heteroscedatic data is to

transform x and/or y before constructing the regression line. Two
common approaches are logarithmic or square root transforma-
tion of both x and y before OLR [7,8,22,23]. A different approach
is the power model originally proposed by Box and Cox in 1964
and illustrated by Kimanani et al. in 1998 [34–36]. The power
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2.2. Methods

2.2.1. Sample preparation and chromatographic conditions
Data from the validation of a sensitive and specific bioana-

lytical method for determination of PQ in urine by automated
solid-phase extraction (SPE) and liquid chromatography (LC)
was used in this study [28]. Briefly, buffered urine samples
(containing internal standard) were loaded onto mixed phase
(cation-exchange and octylsilica) SPE columns using an ASPEC
XL SPE robot. Chromatographic separation was achieved on
a Chromolith Performance RP-18e (100 mm × 4.6 mm ID) LC
column with phosphate buffer (pH 2.5; 0.1 mol/L)–acetonitrile
(92:8, v/v). PQ was analysed at a flow rate of 3 mL/min with UV
detection at 347 nm.

2.2.2. Data analysis
The peak height ratio of PQ to internal standard (IS) was

used as response (y) for a concentration range (x) from 9 to
10 000 ng/mL using six calibration levels. The standard curve
was assayed in five replicates on day 1 and then in single
determination for four consecutive days. Standard curves were
constructed using 19 different regression models. The unit of the
calibrators (�g/mL and ng/mL) was also evaluated to investigate
if it would alter the results for each model. A strategy diagram of
the different regression models is presented in Fig. 1. Back cal-
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odel transforms the data using an optimal power value (λopt)
hich minimises the sum of squared residuals (SSR). A given

et of concentrations (x) and responses (y) are transformed by an
ssigned power value (λ) as expressed in Eqs. (6) and (7), and
valuated by SSR as expressed in Eq. (8). The optimal power
alue is determined empirically through iteration towards a mini-
um value of SSR. OLR is thereafter applied on the transformed

ata to construct the regression line. All equations are as follows:

(λ) = yλ − 1

λẏλ−1 , if λ �= 0 (6)

(λ) = ẏ ln y, if λ = 0 (7)

SR(λ) =
∑

(yi
(λ) − a − bx

(λ)
i )2 (8)

(λ) = a + bx(λ) + ε (9)

here λ is the power value, ẏ the geometric mean of the
esponses, y(λ) the transformed response, x(λ) the transformed
oncentration and ε is the uncorrelated random error.

Fig. 1. Strategy diagram of th
ulated concentrations (xnew) for the different regression models
ere calculated using Eqs. (10)–(13).
Back calculated concentration for linear regression (Eq.

10)):

new = y − a

b
(10)

here y is the PQ/IS height response, a the y-intercept and b is
he slope.

Back calculated concentration for quadratic regression (Eq.
11)):

new = −b +
√

b2 − 4a(c − y)

2a
(11)

ack calculated concentration for Box–Cox power transforma-
ion (Eqs. (12) and (13)):

new = λopt
√

(λoptx(λopt)ẋλopt−1) + 1, if λopt �= 0 (12)

new = exλopt/ẋ, if λopt = 0 (13)

evaluated regression models.
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where λopt is the optimal power value and ẋ is the geometric
mean of concentration values.

The relative residuals (RR) were calculated based on back
calculated concentration (xnew) and nominal concentration
(xnominal) according to the following equation:

RR = 100 × xnew − xnominal

xnominal
(14)

Three quality control (QC) levels (50, 500, 5000 ng/mL) were
prepared to validate accuracy and precision (i.e. predictability).
The accuracy and precision of the method were estimated by
analysis of five replicates of each QC level for 4 days. Con-
centrations were predicted for each regression model using a
calibration curve prepared on the same day as the QC samples.
Average accuracy and total-assay precision for all replicates at
each level were used in the evaluation. All regression models
were fitted to data using model options in LaChrom Elite soft-
ware (VWR International, Darmstadt, Germany) or by manual
calculation in Windows Excel® (Microsoft Corporation).

2.2.3. Data evaluation
Two approaches to evaluate regression models were com-

pared in this paper. The first approach is based on the evaluation
of five series of calibration curves analysed during one analytical
run (i.e. during pre-validation). This is the traditional approach
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QC levels served as markers for predictability. All the regres-
sion models investigated were initially ranked for calibration
curve fit and predictability separately. The rank sum of these
two markers generated a final ranking for the regression models
(Table 4). The regression model with lowest rank sum repre-
sents the optimal model amongst those evaluated. The aim was
to find the simplest regression model that had the best overall
characteristics over the whole calibration range.

3. Results

The initial F-test confirmed that the data set was
heteroscedastic as expected. The variance at the highest
(10 000 ng/mL) calibrator level was significantly higher than the
variance at the lowest (9 ng/mL) calibrator level.

3.1. Traditional approach using SRR (i.e. pre-validation)

The five replicates of calibrators were fitted to the regres-
sion models individually and as a mean of the replicates. The
total SRR for the evaluated regression models are summarised
in Table 1. It is obvious from the results that the simplest model
OLR generates much higher residuals than all the other mod-
els. It is not surprising considering that the data was already
shown to be heteroscedastic. As expected, back calculated con-
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here the total sum of relative residuals (SRR) for all the cal-
bration standards guides the choice of regression model [24].
he second is a new approach that uses both calibration curve
t and calibration curve predictability to evaluate the regression
odel. This approach uses data generated during 4 days instead

f a single day to ensure that the evaluation process incorpo-
ates time-dependent reproducibility. Average relative residuals
�RR) at each calibration level served as markers for calibra-
ion curve fit. Accuracy and precision for the three independent

able 1
otal sum of relative residuals for evaluated regression models fitted to the regr

itting Regression model

Transformation Weight Forced through o

inear No No No
inear No 1/x No
inear No 1/x2 No
inear No No Yes
inear No 1/x Yes
inear No 1/x2 Yes
inear log–log No No
inear log–log 1/x No
inear log–log 1/x2 No
inear Box–Cox No No
inear Square root No No
inear Square root 1/x No
inear Square root 1/x2 No
uadratic No No No
uadratic No 1/x No
uadratic No 1/x2 No
uadratic log–log No No
uadratic log–log 1/x No
uadratic log–log 1/x2 No
entrations from the individual curves presents lower SRR than
hen the mean curve is used to predict the replicates. How-

ver, the relative difference between the 19 models remained
onstant suggesting that either individual or mean fitting can be
sed for model evaluation. An additional requirement is that the
odels have to meet the acceptance criteria set up by the FDA

1]. At least four out of six data points should have accuracy and
recision <15%. All replicates at the LLOQ and the highest con-
entration should have accuracy and precision <20 and <15%,

models individually and as mean of replicates

Sum of relative residuals (SRR) Criteria meet

Individual curve (%) Mean curve (%)

2788 2801 N
419 423 N
268 277 N
540 545 N
518 522 N
481 481 N
107 114 Y
108 117 Y
108 119 Y
86 101 Y

313 320 N
200 206 N
181 189 Y
887 909 N
271 279 N
188 199 Y
68 94 Y
71 98 Y
75 104 Y
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respectively. Nine out of the 19 tested models met this require-
ment and could theoretically be chosen. The calibration curve fit
and the impaired accuracy at the lower concentration range for
some of the models are illustrated in Fig. 2. FDA guidelines state

that the simplest model that adequately describes data should be
chosen and that weighting and transformation needs justification
[1]. The linear and quadratic models with log–log transformation
and the Box–Cox transformation model all showed comparable
Fig. 2. Selected regression models fitted to mean
 of five replicates at each calibration level.
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SRR. Based only upon the SRR results in Table 1, a quadratic
log–log transformed calibration model would be the model of
choice. However, whether the presented data alone are power-
ful enough to justify that choice when using this approach is
a valid point for discussion. The F-test has already shown the
data to be heteroscedastic, thus justifying a more complicated
model than OLR. The main risk when choosing a complicated
model is over-fitting which could lead to an impaired predictive
capacity. The challenge of choosing between the best models
based on a good compromise between performance (i.e. SRR)
and simplicity still remains.

3.2. New approach using parameter rank

The relative residuals for each calibration level over 4 days
were used to rank the models according to calibration curve fit
(Table 2). The accuracy and precision for three independent QC
levels were used to rank the models according to calibration
curve predictability (Table 3). Calibration standards were best
described by a log–log transformed linear regression, whereas
precision and accuracy for the QC samples were best described
by the square root transformed 1/x weighted linear regression.
The final ranking of the models was based on a combina-
tion of calibration curve fit and calibration curve predictability
(Table 4). The best model with respect to overall characteris-
tics was the linear log–log transformed model. This choice is
b
r
e
u
t

over-fitting the calibration curve when using a more complex
model. The proposed approach will minimise the likelihood of
over-fitting the calibration curve as it incorporates curve inde-
pendent QC samples. The linear log–log models with weighting
are ranked second best with respect to the calibration curve fit.
However, they are only ranked in 9th and 11th place with respect
to predictability of the QC samples. The square root transforma-
tion with 1/x weighting and Box–Cox transformation models are
ranked as the two best models with respect to predictability of
the QC samples but only come in at 7th and 13th place when
ranked for calibration curve fit (Table 4). The unit of the cali-
brators (�g/mL or ng/mL) did affect the results for the log–log
transformed models when weighting was used but not for any
of the other models.

4. Discussion

Data transformations (e.g. log–log) are a good way to improve
calibration curve fit and ensure a robust calibration model. The
reason for the improvement compared to OLR is simply that
the calibration range is significantly reduced after transforma-
tion. The square root transformation might be a better choice if
a more narrow calibration range is used considering that the
reduction is less drastic than for the log–log transformation.
The use of log x and log y decreases the distance between the
lowest and highest point in the calibration range, thus lead-
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ank

L 9
L 2
L 4
L 7
L 6
L 5
L 5
L 6
L 6
L 9
L 1
L 8
L 0
Q 8
Q 3
Q 1
Q 4
Q 3
Q 2

�

ased on 12 different parameters covering the whole calibration
ange. Furthermore the data were generated over four differ-
nt days thus reflecting the actual performance during routine
se of the assay. The requirement in the FDA guidelines to jus-
ify any other model than OLR originates from the concern of

able 2
otal relative error for the calibration curve (range 9–10 000 ng/mL)

itting Regression model Mean relative residuals ove

Transformation Weight Forced
through
origo

9 ng/mL 40 ng/mL

�RR
(%)

Rank �RR
(%)

R

inear No No No 281.9 19 62.6 1
inear No 1/x No 33.4 16 14.9 1
inear No 1/x2 No 4.1 4 16.8 1
inear No No Yes 21.6 14 27.4 1
inear No 1/x Yes 21.1 13 27.1 1
inear No 1/x2 Yes 10.7 10 17.7 1
inear log–log No No 5.8 8 9.3
inear log–log 1/x No 4.2 5 10.0
inear log–log 1/x2 No 4.2 5 10.0
inear Box–Cox No No 11.2 11 12.3
inear Square root No No 37.6 17 3.9
inear Square root 1/x No 19.3 12 10.3
inear Square root 1/x2 No 7.4 9 13.0 1
uadratic No No No 235.1 18 29.2 1
uadratic No 1/x No 28.2 15 14.9 1
uadratic No 1/x2 No 3.1 3 13.8 1
uadratic log–log No No 4.6 7 9.2
uadratic log–log 1/x No 2.5 2 8.9
uadratic log–log 1/x2 No 1.3 1 8.1
RR: mean relative residuals.
ng to a more compressed regression line. This stabilises the
ariance over the concentration range and equalises the influ-
nce of each point on the regression line [33]. The Box–Cox
ransformation shows good predictability for the QC samples
ut a poor fit for the calibration standards. This is likely to be

our validation days Rank
sum

150 ng/mL 625 ng/mL 2500 ng/mL 10 000 ng/mL

�RR
(%)

Rank �RR
(%)

Rank �RR
(%)

Rank �RR
(%)

Rank

15.6 19 7.4 16 4.4 7 0.3 3 83
11.2 16 9.0 17 4.3 5 1.2 6 72
5.7 13 3.5 3 10.2 17 9.6 18 69

14.8 18 10.1 19 5.2 11 0.3 4 83
14.3 17 9.6 18 4.3 6 1.3 7 77
3.4 6 4.5 7 14.7 19 14.2 19 76
2.9 3 3.7 4 4.8 8 2.4 10 38
2.7 1 3.8 5 5.7 14 2.6 11 42
2.7 1 3.8 5 5.7 14 2.6 11 42
4.8 10 4.6 9 5.7 13 2.8 13 65
4.4 9 5.2 11 3.9 4 0.9 5 47
5.5 12 5.7 12 3.4 3 1.9 8 55
4.4 8 3.2 1 7.5 16 6.1 16 60
3.1 4 7.3 15 0.6 1 0.01 1 57
9.4 15 6.8 14 3.0 2 0.2 2 61
3.2 5 4.8 10 10.7 18 2.3 9 56
3.8 7 3.5 2 5.0 9 3.3 14 43
5.3 11 4.5 8 5.4 12 5.1 15 51
7.2 14 5.9 13 5.1 10 7.6 17 57
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Table 3
Predictability of QC samples (range 50–5000 ng/mL)

Fitting Regression model Accuracy and precision of QC samples over all four validation days Rank
sum

Transformation Weight Forced
through
origo

50 ng/mL 500 ng/mL 5000 ng/mL

Accuracy
(%)

Rank Precision
(%)

Rank Accuracy
(%)

Rank Precision
(%)

Rank Accuracy
(%)

Rank Precision
(%)

Rank

Linear No No No 16.0 16 49.8 19 −1.0 4 5.8 15 9.7 6 4.6 17 77
Linear No 1/x No −10.1 15 7.4 1 −3.1 6 5.6 10 10.1 8 4.0 14 54
Linear No 1/x2 No −9.5 14 8.2 5 4.9 11 5.3 6 19.9 18 2.9 4 58
Linear No No Yes −20.2 18 9.5 16 −4.6 10 6.5 19 9.3 4 5.1 19 86
Linear No 1/x Yes −19.8 17 8.9 9 −3.9 7 5.8 14 10.2 11 4.0 13 71
Linear No 1/x2 Yes −9.1 12 8.6 8 8.9 16 5.5 9 24.9 19 3.2 7 71
Linear log–log No No −0.3 2 9.2 11 7.0 12 5.2 3 10.1 9 3.6 11 48
Linear log–log 1/x No −1.0 4 9.3 12 7.3 13 5.3 5 11.5 14 3.3 9 57
Linear log–log 1/x2 No −1.4 6 9.3 13 8.5 15 5.5 7 14.4 16 2.8 1 58
Linear Box–Cox No No −1.0 3 8.2 4 4.6 9 5.8 13 10.2 10 2.9 3 42
Linear Square root No No 1.7 7 9.4 14 1.4 5 5.1 1 10.0 7 4.0 15 49
Linear Square root 1/x No −4.1 9 8.1 3 0.7 1 5.2 2 11.0 13 3.5 10 38
Linear Square root 1/x2 No −5.9 11 8.4 6 4.0 8 5.3 4 16.4 17 3.0 5 51
Quadratic No No No 25.2 19 10.2 18 −0.9 3 5.7 12 8.9 3 2.9 2 57
Quadratic No 1/x No −9.3 13 7.7 2 −0.8 2 6.0 18 10.7 12 3.2 8 55
Quadratic No 1/x2 No −5.6 10 8.5 7 9.6 17 5.9 16 14.2 15 3.2 6 71
Quadratic log–log No No 0.2 1 9.2 10 8.1 14 5.5 8 9.4 5 3.8 12 50
Quadratic log–log 1/x No 1.1 5 9.5 15 9.9 18 5.7 11 8.5 2 4.1 16 67
Quadratic log–log 1/x2 No 2.4 8 9.9 17 11.6 19 5.9 17 7.0 1 4.9 18 80

Accuracy = (mean predicted concentration/nominal value) − 1; precision = mean relative standard deviation.
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Table 4
Final ranking for the regression models (range 9–10 000 ng/mL)

Regression model Ranking of calibration standards and QC samples

Fitting Transformation Weight Forced through origo Ranking of calibration
standards

Ranking of QC samples Rank sum Final ranking

Linear No No No 18 17 35 18
Linear No 1/x No 15 7 22 12
Linear No 1/x2 No 14 11 25 14
Linear No No Yes 18 19 37 19
Linear No 1/x Yes 17 14 31 17
Linear No 1/x2 Yes 16 14 30 16
Linear log–log No No 1 3 4 1
Linear log–log 1/x No 2 9 11 5
Linear log–log 1/x2 No 2 11 13 6
Linear Box–Cox No No 13 2 15 7
Linear Square root No No 5 4 9 3
Linear Square root 1/x No 7 1 8 2
Linear Square root 1/x2 No 11 6 17 8
Quadratic No No No 9 9 18 9
Quadratic No 1/x No 12 8 20 11
Quadratic No 1/x2 No 8 14 22 12
Quadratic log–log No No 4 5 9 3
Quadratic log–log 1/x No 6 13 19 10
Quadratic log–log 1/x2 No 9 18 27 15

caused by day-to-day variation in the calibration curve. The
Box–Cox transformation determines an optimal power value
through the process of iteration. A requirement is therefore that
several calibration curves are analysed during several days in
order to have enough data to generate an optimal power value
which is reproducible. The challenge is to find and fixate a
power value during validation that can be used during rou-
tine analysis (i.e. several standard curves over several days are
required).

Our result also showed that in the case of log–log transfor-
mation, weighting had less influence on the regression line com-
pared to non-scaled models. Weighting factors have an important
effect on the SRR for non-transformed models and results in
a considerable improvement in predictability, especially in the
low concentration region. The slope was marginally affected by
weighting but the intercept dropped by more than one order of
magnitude. Karnes et al. argued that forcing a regression line
through zero would improve the overall fit [21]. Forcing the
regression line through zero significantly improved the SRR in
this investigation compared to OLR with intercept. However,
with respect to the calibration curve fit ranking and the final rank-
ing, forcing through zero turned out to be the least favourable
model in the present investigation.

Although the calibrator units (�g/mL or ng/mL) made no
difference for most of the models, it is important to note that
the unit actually has an impact on the model performance when
u
m
a
i
n

h

can have a significant impact on pharmacokinetic studies when
accurate quantification at low concentrations is required. This
would in particular affect pharmacokinetic studies of drugs, such
as PQ, with a long terminal elimination phase and low plasma
concentration [37,38].

5. Conclusion

Traditionally OLR has been used in quantitative assays of
drugs in biological matrices. We suggest that OLR should not
be the primary method of choice; on the contrary it should gen-
erally be avoided especially when a broad concentration range is
used. Other regression models that are capable of correcting for
an increased variance throughout the calibration range should be
evaluated. Transformation models have traditionally been used
less often than weighted calibration models. The present inves-
tigation shows that transformation models can be a beneficial
alternative compared to weighted models. The design of the
proposed strategy will provide enough support for the analyst
to justify a choice of a more complex regression model than
OLR in accordance with the requirements from FDA guide-
lines. We recommend including evaluation of independently
spiked QC samples together with calibration standards assayed
over several days when choosing calibration model during
validation.

A

U
s
w
o

sing log–log transformation and weighting. log–log transfor-
ation of decimal numbers less than one form negative values

fter transformation and therefore also different relative weights
n the regression compared to transformed values with decimal
umbers larger than one.

The quantification limits are generally overestimated when
eteroscedastic data are treated by the OLR approach [23]. This
cknowledgements

This investigation was part of the Wellcome Trust – Mahidol
niversity – Oxford tropical Medicine Research Programme,

upported by The Wellcome Trust of Great Britain. This research
as also partly supported by the Swedish International Devel-
pment Cooperation Agency (SIDA).



T. Singtoroj et al. / Journal of Pharmaceutical and Biomedical Analysis 41 (2006) 219–227 227

References

[1] Guidance for industry, Bioanalytical Method Validation, U.S. Depart-
ment of Health and Human Services, Food and Drug Administration,
Rockville, 2001.

[2] Text on validation of analytical procedure: definitions and terminology
(Q2A), Tripartite International Conference on Harmonisation Text (ICH),
ICH Tech. Coordination, London, 1994.

[3] Text on validation of analytical procedure: methodology (Q2B), Tripar-
tite International Conference on Harmonisation Text (ICH), ICH Tech.
Coordination, London, 1995.

[4] ISO 5725, Accuracy (trueness and precision) of measurement methods
and results, Parts 1–4, 6, ISO, Geneva, Switzerland, 1994.

[5] V.P. Shah, K.K. Midha, S. Dighe, I.J. McGilveray, J.P. Skelly, A. Yacobi,
T. Layloff, C.T. Viswanathan, C.E. Cook, R.D. McDowall, K.A. Pittman,
S. Spector, Pharm. Res. 9 (1992) 588–592.

[6] C. Hartmann, D.L. Massart, R.D. McDowall, J. Pharm. Biomed. Anal.
12 (1994) 1337–1343.

[7] P. Hubert, P. Chiap, J. Crommen, B. Boulanger, E. Chapuzet, N. Mercier,
S. Bervoas-Martin, P. Chevalier, D. Grandjean, P. Lagorce, M. Lallier,
M.C. Laparra, M. Laurentie, J.C. Nivet, Anal. Chim. Acta 391 (1999)
135–148.

[8] P. Chiap, P. Hubert, B. Boulanger, J. Crommen, Anal. Chim. Acta 391
(1999) 227–238.

[9] P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N.
Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Lau-
rentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, J. Pharm. Biomed.
Anal. 36 (2004) 579–586.

[10] B. Streel, A. Ceccato, R. Klinkenberg, P. Hubert, J. Chromatogr. B 814
(2005) 263–273.

[11] O. Rbeida, B. Christiaens, P. Hubert, D. Lubda, K.S. Boos, J. Crommen,

[

[

[

[

[

[17] V.P. Shah, K.K. Midha, J.W. Findlay, H.M. Hill, J.D. Hulse, I.J.
McGilveray, G. McKay, K.J. Miller, R.N. Patnaik, M.L. Powell,
A. Tonelli, C.T. Viswanathan, A. Yacobi, Pharm. Res. 17 (2000)
1551–1557.

[18] B. Boulanger, P. Chiap, W. Dewe, J. Crommen, P. Hubert, J. Pharm.
Biomed. Anal. 32 (2003) 753–765.

[19] M. Mulholland, D.B. Hibbert, J. Chromatogr. A 762 (1997) 73–82.
[20] E.L. Johnson, D.L. Reynolds, D.S. Wright, L.A. Pachla, J. Chromatogr.

Sci. 26 (1988) 372–379.
[21] H.T. Karnes, G. Shiu, V.P. Shah, Pharm. Res. 8 (1991) 421–426.
[22] G.K. Szabo, H.K. Browne, A. Ajami, E.G. Josephs, J. Clin. Pharmacol.

34 (1994) 242–249.
[23] M.A. Castillo, R.C. Castells, J. Chromatogr. A 921 (2001) 121–133.
[24] A.M. Almeida, M.M. Castel-Branco, A.C. Falcao, J. Chromatogr. B 774

(2002) 215–222.
[25] N.V. Nagaraja, J.K. Paliwal, R.C. Gupta, J. Pharm. Biomed. Anal. 20

(1999) 433–438.
[26] J.R. Lang, S. Bolton, J. Pharm. Biomed. Anal. 9 (1991) 357–361.
[27] J. Wieling, G. Hendriks, W.J. Tamminga, J. Hempenius, C.K. Mensink,

B. Oosterhuis, J.H. Jonkman, J. Chromatogr. A 730 (1996) 381–394.
[28] J. Tarning, T. Singtoroj, A. Annerberg, M. Ashton, Y. Bergqvist, N.J.

White, N. Lindegardh, N.P.J. Day, J. Pharm. Biomed. Anal., in press.
[29] K. Baumann, Process Control Qual. 10 (1997) 75–112.
[30] M.J. Cardone, S.A. Willavize, M.E. Lacy, Pharm. Res. 7 (1990)

154–160.
[31] C. Hartmann, W. Pennickx, Y.V. Heyden, P. Vankeerberghen, D.L. Mas-

sart, R.D. McDowall, Bioavailability, Bioequivalence and Pharmacoki-
netic Studies, Medpharm Scientific Publishers, Stuttgart, 1995.

[32] Water Quality—Calibration and Evaluation of Analytical Methods and
Estimation of Performance Characteristics. Part 1. Statistical Evaluation
of the Linear Calibration Function, International Standard-ISO 8466-

[

[
[
[

[

[

P. Chiap, J. Pharm. Biomed. Anal. 36 (2005) 947–954.
12] O. Rbeida, P. Chiap, D. Lubda, K.S. Boos, J. Crommen, P. Hubert, J.

Pharm. Biomed. Anal. 36 (2005) 961–968.
13] M. Feinberg, B. Boulanger, W. Dewe, P. Hubert, Anal. Bioanal. Chem.

380 (2004) 502–514.
14] A. Ceccato, R. Klinkenberg, P. Hubert, B. Streel, J. Pharm. Biomed.

Anal. 32 (2003) 619–631.
15] B. Christiaens, M. Fillet, P. Chiap, O. Rbeida, A. Ceccato, B. Streel,

J. De Graeve, J. Crommen, P. Hubert, J. Chromatogr. A 1056 (2004)
105–110.

16] C. Hartmann, J. Smeyers-Verbeke, D.L. Massart, R.D. McDowall, J.
Pharm. Biomed. Anal. 17 (1998) 193–218.
1:1990 (E), ISO, Geneva, 1990.
33] P. Armitage, G. Berry, Statistical Methods in Medical Research, Black-

well Science Ltd., London, 1994.
34] G.E.P. Box, D.R. Cox, J. Roy. Stat. Soc. B 26 (1964) 211–252.
35] E.K. Kimanani, J. Pharm. Biomed. Anal. 16 (1998) 1117–1124.
36] E.K. Kimanani, J. Lavigne, J. Pharm. Biomed. Anal. 16 (1998)

1107–1115.
37] T.Y. Hung, T.M. Davis, K.F. Ilett, H. Karunajeewa, S. Hewitt, M.B.

Denis, C. Lim, D. Socheat, Br. J. Clin. Pharmacol. 57 (2004) 253–
262.

38] J. Tarning, N. Lindegardh, A. Annerberg, T. Singtoroj, N.P.J. Day, M.
Ashton, N.J. White, Antimicrob. Agents Chemother., in press.


	A new approach to evaluate regression models during validation of bioanalytical assays
	Introduction
	Experimental
	Background
	Homoscedasticity
	Ordinary and weighted linear regression (OLR/WLR)
	Polynomial regression
	Transformation methods

	Methods
	Sample preparation and chromatographic conditions
	Data analysis
	Data evaluation


	Results
	Traditional approach using SRR (i.e. pre-validation)
	New approach using parameter rank

	Discussion
	Conclusion
	Acknowledgements
	References


